Simple algorithm to determine the near-edge smoke boundaries with scanning lidar.

نویسندگان

  • Vladimir A Kovalev
  • Jenny Newton
  • Cyle Wold
  • Wei Min Hao
چکیده

We propose a modified algorithm for the gradient method to determine the near-edge smoke plume boundaries using backscatter signals of a scanning lidar. The running derivative of the ratio of the signal standard deviation (STD) to the accumulated sum of the STD is calculated, and the location of the global maximum of this function is found. No empirical criteria are required to determine smoke boundaries; thus the algorithm can be used without a priori selection of threshold values. The modified gradient method is not sensitive to the signal random noise at the far end of the lidar measurement range. Experimental data obtained with the Fire Sciences Laboratory lidar during routine prescribed fires in Montana were used to test the algorithm. Analysis results are presented that demonstrate the robustness of this algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation of entrainment near a density stratified layer: Laboratory experiment and LIDAR observation

In this paper a simple qualitative model of the growth of a mixed layer adjacent to a uniform layer with a stably stratified layer is presented. The depth variations of mixed layer can be estimated from direct measurements. The Entrainment of a stably stratified layer into a turbulent mixed layer in a confined region was studied in laboratory for different Richardson numbers. The internal waves...

متن کامل

Determination of smoke plume and layer heights using scanning lidar data.

The methodology of using mobile scanning lidar data for investigation of smoke plume rise and high-resolution smoke dispersion is considered. The methodology is based on the lidar-signal transformation proposed recently [Appl. Opt. 48, 2559 (2009)]. In this study, similar methodology is used to create the atmospheric heterogeneity height indicator (HHI), which shows all heights at which the smo...

متن کامل

Use of Lidar Data to Constrain the Matching of Conjugate Features in Large-scale Imagery over Urban Areas

Reliable and accurate 3-D reconstruction of man-made objects, especially buildings, is essential for many applications that involve the use of digital 3-D city models. This paper aims at developing a semi-automated technique for building rooftop reconstruction employing a combination of large-scale aerial imagery and airborne laser scanning data acquired by Light Detection and Ranging (LiDAR) t...

متن کامل

Lidar monitoring of regions of intense backscatter with poorly defined boundaries.

The upper height of a region of intense backscatter with a poorly defined boundary between this region and a region of clear air above it is found as the maximal height where aerosol heterogeneity is detectable, that is, where it can be discriminated from noise. The theoretical basis behind the retrieval technique and the corresponding lidar-data-processing procedures are discussed. We also sho...

متن کامل

A FUZZY DIFFERENCE BASED EDGE DETECTOR

In this paper, a new algorithm for edge detection based on fuzzyconcept is suggested. The proposed approach defines dynamic membershipfunctions for different groups of pixels in a 3 by 3 neighborhood of the centralpixel. Then, fuzzy distance and -cut theory are applied to detect the edgemap by following a simple heuristic thresholding rule to produce a thin edgeimage. A large number of experime...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied optics

دوره 44 9  شماره 

صفحات  -

تاریخ انتشار 2005